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A B S T R A C T

Lithium-ion batteries in electrical devices face inevitable degradation along with the long-term usage. The
accompanying battery capacity estimation is crucial for battery health management. However, the hand-crafted
feature engineering in traditional methods and complicated network design followed by the laborious trial
in data-driven methods hinder efficient capacity estimation. In this work, the battery measurements from
different sensors are organized as the graph structure and comprehensively utilized based on graph neural
network. The feature fusion is further designed to enhance the network capacity. The specific data aggregation
and feature fusion operations are selected by neural architecture search, which relieves the network design
and increases the adaptability. Two public datasets are adopted to verify the effectiveness of the proposed
scheme. Additional discussions are conducted to emphasize the capability of the graph neural network and
the necessity of architecture searching. The comparison analysis and the performance under noisy environment
further demonstrate the superiority of proposed scheme.
1. Introduction

The lithium-ion batteries, shared the advantages such as high energy
density, have achieved extensive applications in diverse energy storage
scenarios [1,2]. However, battery degradation is inevitable with the
charging and discharging processes, which leads to decreased capacity
and final end-of-life. The timely and accurate capacity estimation is a
critical objective for the battery prognostics and management [3,4].

Traditionally, the capacity estimation is conducted by hand-crafted
features and machine learning methods [5–7], such as support vectors
regression [8], random forest regression [9], sparse Bayesian learn-
ing [10], particle filter [11]. Zhu et al. extracted the statistical features
from voltage relaxation and then selected the feature combination ac-
cording to cross validation [12]. Richardson et al. introduced Gaussian
process regression to estimate battery capacity based on the voltage
measurements from periods of galvanostatic operation [13]. She et al.
combined the radial basis function neural networks and modified ran-
dom forest regression to improve estimation accuracy [14]. Most of
these methods attempted to extract the health indicators from the
statistic perspective, the performance of which depends heavily on
the expert experience. Some mathematical models based on battery
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dynamics also have been developed to facilitate the prognostics, such
as electrochemical model [15], open circuit voltage model [16], and
fused model [17]. However, these established models require extensive
expert knowledge. Besides, some of the model parameters are difficult
to be decided and the models usually lack the generalization ability.

With the accumulation of accessible public datasets and rapid
growth of computational power, deep learning based schemes attract
more and more attention [18–20]. Tan et al. extracted features based
on the geometrical analysis of the voltage curve and selected the
reasonable features according to gray relational analysis [21]. Li et al.
used the voltage measurements as input to the long short-term memory
(LSTM) networks and realized remaining capacity estimation [22].
However, these researches neglected the current and temperature in-
formation. Chen et al. applied the extreme learning machine to predict
the complete temperature variation profile and then extracted health
features from the temperature curve [23]. As few works incorporate all
the voltage, current, and temperature information, Hong et al. adopted
three charge–discharge cycle data and applied the dilated convolutional
neural network (CNN) to swiftly predict the remaining useful life [24].
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Li et al. organized the continuous data into a three dimensional im-
age and used a pruning convolutional neural network to predict the
capacity [25]. However, these networks usually need to be designed
deliberately, which leads to high costs from laborious experiments.
Besides, the measurements from different sensors are simply stacked
and then input to the network. The research community still lacks the
trial of comprehensive utilization of the battery measurements. The
relations between the measurements are not explored and further uti-
lized. The commonly used CNN can extract features from the Euclidean
data and LSTM is suitable for sequence, but they face challenges when
processing graph data. The graph neural network (GNN) enables the
process of non-Euclidean data structure and attracts more and more
attention [26,27]. The outputs from diverse sensors can be modeled
by the GNN, which provides potential scheme to accomplish the data
aggregation.

The recent deep learning techniques involve complicated archi-
tectural design [28–30]. Jiao et al. embedded the conditional vari-
ational autoencoder into particle filter framework and introduced a
re-weighting strategy [31]. Tang et al. designed hybrid model to com-
bine the CNN and LSTM, which could extract the spatial and temporal
features, respectively [32]. He et al. incorporated the quantum ge-
netic algorithm, attention mechanism, and mogrifier-LSTM to construct
the entire model [33]. Yang fused three-dimensional CNN and two-
dimensional CNN with an auxiliary feature attention algorithm to
heighten the prediction performance [34]. Ma et al. proposed the deep
belief network - LSTM hybrid network and multiple health indicators
fusion strategy to mine the hidden information [35]. Although the
deliberately designed networks improve the performance, they also lack
the necessary adaptability when facing new scenarios. Therefore, a
uniform estimation framework, which can simultaneously choose the
optimized architecture and accomplish the prediction of capacity, is
required for the prognostics of battery.

In view of the deficiency in measurements exploration and the
complexity in network design, a data aggregation and feature fusion
scheme is proposed to estimate the capacity of lithium-ion battery. The
monitoring data of voltage, current and temperature is organized in
a graph structure. In the charging process, partial measurements are
adopted to construct the graph nodes. Then, the data aggregation is
accomplished by GNN to comprehensively utilize the measurements.
The GNN layers constitute the Supernet. Each GNN layer is learned
flexibly and a feature fusion strategy is further proposed to fuse the
output features of different GNN layers. These designs will improve
the representation capacity and alleviate the over-smoothing problem
existed in GNN. The neural architecture search (NAS) is introduced to
obtain the network from Supernet, which will get rid of the complicated
operation caused by feature engineering or network design. To the best
of our knowledge, this is the first attempt to adopt graph neural net-
work for the health status estimation of battery. The main contributions
of this work are briefly presented as follows:

(1) The data aggregation scheme is designed to comprehensively
utilize the measurements.

(2) The specific aggregation and fusion operations are selected
automatically, which avoids the feature engineering.

(3) Only partial charging data is adopted, which can be applied
under incomplete charging process.

The remainder of this article is organized as follows. Section 2 in-
troduces the proposed capacity estimation scheme in detail. The exper-
imental investigations on two cases, MIT-Stanford dataset and Oxford
dataset, are performed in Section 3. Section 4 conducted more analysis
and discussions to demonstrate the effectiveness and superiority of the
2

proposed scheme. Conclusions are drawn in Section 5.
2. Capacity estimation scheme based on graph neural network

In the battery management system, the basic monitoring data mainly
consist of the voltage 𝑉 , current 𝐼 , and temperature 𝑇 . Further analysis
can be performed using these measurements. Considering the graph
structure provides an efficient way to organize the outputs from mul-
tiple sensors, this work proposes the data aggregation and feature
fusion scheme based on graph neural network. The overall architecture
is depicted in Fig. 1. The graph structure is established based on
the relation modeling of the measurements. Then, the NAS strategy
is conducted to select optimal data aggregation and feature fusion
scheme. The searched scheme will be deployed for model training and
online capacity estimation.

2.1. Graph construction

The graph structure is formulated as 𝐺 = (𝑉 ,𝐸), where 𝑉 and 𝐸
denote the nodes and edges, respectively. The voltage 𝑉 , current 𝐼 ,
and temperature 𝑇 naturally form the nodes in the graph network.
The initial node attributes can be derived from the measurements. To
accomplish the graph construction, maximum information coefficient
(MIC) is adopted here to measure the relationship between nodes and
further form the edge attributes.

Originally, MIC is proposed to describe the dependence relationship
of different variables [36]. In this case, MIC is used to calculate the
correlation coefficient between the measurements. Taking the voltage
and temperature as an example, the variable pair (𝑉𝑖, 𝑇𝑖) from time 𝑖
constitutes the points in the 𝑋−𝑌 coordinates. The mutual information
is firstly obtained by:

𝐼([𝑉 , 𝑇 ], 𝑥, 𝑦) = ∫ 𝑝(𝑥, 𝑦)log2
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

𝑑𝑥𝑑𝑦, (1)

where 𝑝(𝑥, 𝑦) denotes the joint probability, 𝑝(𝑥) and 𝑝(𝑦) are the edge
robabilities. Based on mutual information, the 𝑀𝐼𝐶([𝑉 , 𝑇 ]) is further
eveloped:

𝐼𝐶([𝑉 , 𝑇 ]) = max
𝑎𝑏<𝐵

max 𝐼 {[𝑉 , 𝑇 ], 𝑥, 𝑦}
log2 min {𝑎, 𝑏}

, (2)

where 𝑎 and 𝑏 are the grid numbers in the 𝑥 and 𝑦 axis, respectively. The
mutual information is calculated under different meshing grids. The
maximum value will be found to determine the MIC. The precondition
is also applied to the meshing by giving the upper limit of 𝐵, according
to [36].

The calculated 𝑀𝐼𝐶([𝑉 , 𝑇 ]) value will be adopted as the edge
attributes between voltage node and temperature node. Similarly, other
edges can be obtained and the graph structure is established for the
battery measurements. Then, the GNN will be introduced to aggregate
the information in the whole graph.

2.2. Data aggregation and feature fusion

The GNN can conduct the computation on the graph structure,
which will accomplish the measurements aggregation. Multiple layers
of GNN are adopted and each layer will output corresponding extracted
features. These features from different GNN layers will be further fused
based on certain fusion operations.

2.2.1. Data aggregation by graph neural network
To utilize both the node attribute and edge attribute in the graph

structure, four typical variants of GNN are considered in this work.
These models are graph convolutional network (GCN) [37], Chebyshev
network (ChebyNet) [38], graph attention network (GAT) [39] and
GraphConv [40].

The GCN can be formulated as:
′ ̂ −1∕2 ̂ ̂ −1∕2
𝑿 = 𝑫 𝑨𝑫 𝑿𝜣, (3)
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Fig. 1. The overall architecture of the proposed framework for battery capacity estimation.
where 𝑿 is the node feature matrix from previous layer, �̂� = 𝑨 + 𝑰 is
the adjacency matrix 𝑨 with added self-connections, �̂�𝑖𝑖 =

∑

𝑗=0 �̂�𝑖𝑗 , 𝜣
is the weight matrix.

The ChebyNet is expressed as:

𝑿′ =
𝐾
∑

𝑘=1
𝒁(𝑘)𝜣(𝑘) (4)

where 𝒁(𝑘) is defined in the recursive formulation using the form of
Chebyshev polynomial:

𝒁(1) = 𝑿

𝒁(2) = �̂� ⋅𝑿

𝒁(𝑘) = 2 ⋅ �̂� ⋅𝒁(𝑘−1) −𝒁(𝑘−2)

(5)

where �̂� denotes the scaled Laplacian expressed as �̂� = 2𝑳∕𝜆𝑚𝑎𝑥 − 𝑰 ,
and 𝜆𝑚𝑎𝑥 is from the diagonalized value after the matrix factorization.

The GAT adopts the idea of attention mechanism:

𝒙′𝑖 = 𝛼𝑖,𝑖𝜣𝒙𝑖 +
∑

𝑗∈ (𝑖)
𝛼𝑖,𝑗𝜣𝒙𝑗 (6)

where  (𝑖) denotes the neighbors of node 𝑖, 𝛼𝑖,𝑗 is the attention
coefficients. The attention mechanism can be expressed as:

𝛼𝑖,𝑗 =
exp(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝒂𝑇 [𝜣𝒙𝑖‖𝜣𝒙𝑗‖𝜣𝑒𝒆𝑖,𝑗 ]))

∑

𝑘∈ (𝑖)
⋃

{𝑖} exp(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝒂𝑇 [𝜣𝒙𝑖‖𝜣𝒙𝑘‖𝜣𝑒𝒆𝑖,𝑘]))
(7)

where 𝒂 represents the weight vector to represent the attention,
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 is the commonly used nonlinearity function, ∥ denotes the
concatenation operation, 𝒆𝑖,𝑗 is the edge attribute.

The GraphConv can be formulated as:

𝒙′𝑖 = 𝑾 1𝒙𝑖 +𝑾 2
∑

𝑗∈ (𝑖)
𝑒𝑗,𝑖 ⋅ 𝒙𝑗 (8)

where 𝑾 1 and 𝑾 2 are the learnable parameter matrices, and 𝑒𝑗,𝑖 is the
edge weight from source node 𝑗 to target node 𝑖.

To illustrate the measurements aggregation, the process of ChebyNet
is described in Fig. 2. The notation of 𝑛 means the node number,
𝐹𝑖𝑛 and 𝐹𝑜𝑢𝑡 denote the input feature dimension and output feature
dimension, respectively. Through the computation contained in GNN,
the information in the nodes will interact and message passing will
occur among the nodes.
3

Before the GNN layers, one fully connected layer will perform as the
input layer. This layer will transform the input data dimension into a
fixed feature dimension. After the final GNN layer, the global average
pooling is added as the graph read out. Following that, the output layer
of two fully connected layers will map the feature to the estimated
capacity.

2.2.2. Feature fusion operation
The outputs of GNN layers will be further combined using the fea-

ture fusion operation. The fusion operation includes two steps: selection
and fusion, as suggested by [41]. The selection step is used to determine
whether to choose the feature or not, while the fusion process is to
gather the features from different layers.

The detailed feature fusion operation is depicted in Fig. 3. A stack
of three GNN layers is adopted. The output of one layer will connect
to the following layers. The selection step of feature fusion is executed
first to decide if the output will be incorporated or not.

In the selection step, ‘‘N ’’ means to exclude the feature, while ‘‘Y ’’
is the opposite. For layer 𝑣, this selection step can be expressed as:

𝑿𝑣 = 𝛼1𝑁(𝑿𝑢) + 𝛼2𝑌 (𝑿𝑢) (9)

where 𝑢 is the previous layer, 𝛼1 and 𝛼2 are the weights. 𝑁(𝑿𝑢) = 0
means the feature is not chosen, and 𝑌 (𝑿𝑢) = 𝑿𝑢 is to choose the
feature from layer 𝑢.

The input of layer 𝑣 is from all the previous layers. To fuse the
multiple input features, the fusion operation is applied. The operation
options include: sum, max, mean, and concatenation. They can be
expressed as:

SUM ∶ 𝒙(1)𝑖 +⋯ + 𝒙(𝑢)𝑖 (10a)

MAX ∶ max
(

𝒙(1)𝑖 ,… ,𝒙(𝑢)𝑖

)

(10b)

MEAN ∶ 1
𝑢

(

𝒙(1)𝑖 +⋯ + 𝒙(𝑢)𝑖

)

(10c)

CONCAT ∶ 𝒙(1)𝑖 ‖⋯ ‖𝒙(𝑢)𝑖 (10d)

where 𝒙𝑖 is the attributes of node 𝑖. The layers from 1 to 𝑢(𝑢 < 𝑣) are
fused in layer 𝑣. The fusion operation is conducted in a node-wise way,
which means the same node from different layers will go through the
fusion computation.
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Fig. 2. The illustration of ChebyNet.
Fig. 3. The data aggregation and feature fusion operation.
The selection step and fusion step will realize the automatic fea-
ure filtering and optimization. Besides, the selection step will also
erform the function of skipping connection. If the ‘‘N’’ is adopted for
he final searched architecture, the corresponding GNN layers will be
emoved.

.2.3. Architecture based on NAS
The different operations in the last section actually constitute the

earch space. To form the specific architecture, the NAS strategy is
eeded. The differentiable architecture search (DARTS) provides an
xecutable method [42]. In detail, each layer will process the features
ntroduced from predecessors and it can be expressed as:

𝑣 =
∑

𝑢<𝑣
𝑂𝑝𝑢→𝑣(𝑿𝑢), (11)

where 𝑂𝑝𝑢→𝑣 means the operation from layer 𝑢 to layer 𝑣. The total
ombination of all the operations forms one Supernet. The relaxation
echnique is further applied to make the searching process continu-
us. The computations in each layer become a mixture of possible
perations:

𝑂𝑝(𝑿) =

∑

𝛼𝑘𝑂𝑝(𝑿), (12)
4

𝑘=1
where 𝛼𝑘 is the weight, which is calculated by the relaxation function
using the common softmax:

𝛼𝑘 =
exp(𝑐𝑘∕𝜆)

∑
𝑖=1 exp(𝑐𝑖∕𝜆)

, (13)

where 𝜆 is the temperature parameter, 𝑐𝑘 is learnable Supernet param-
eter.

The above procedures create a continuous search space and it
can also be conducted using the gradient descent method. Thus, the
architecture and the weights can be jointly optimized. The overall
objective is to find the parameter 𝑐 which makes the network achieve
the minimal validation loss. This bi-level optimization can be expressed
as:

min
𝑐

𝑣𝑎𝑙
(

𝜔∗(𝑐), 𝑐
)

s.t. 𝜔∗(𝑐) = argmin𝜔 𝑡𝑟𝑎𝑖𝑛(𝜔, 𝑐)
(14)

where 𝑡𝑟𝑎𝑖𝑛 and 𝑣𝑎𝑙 are the training loss and validation loss, re-
spectively. To solve the above-mentioned optimization problem, the
approximation scheme can be adopted according to DARTS [42].

After the NAS process, the operations with the largest weight 𝛼
will be chosen to constitute the eventual architecture. This derived
architecture will be deployed for further training and testing.
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Algorithm 1: Data aggregation and feature fusion for capacity
stimation
Data: Voltage 𝑉 , Current 𝐼 , Temperature 𝑇 . Construct the graph
𝐺 = (𝑉 ,𝐸) by MIC and form the training and validation
datasets.
Automatic architecture searching:
Create the Supernet with mixed operation
Initialize the weights 𝜔 and 𝑐𝑘 randomly
while not converged do

(1) Conduct approximation scheme based on DARTS
(2) Update architecture weights 𝑐𝑘
(3) Update network weights 𝜔

Derive the optimal architecture according to the largest
architecture weights 𝑐𝑘
Training and Validation:
Initialize the network parameters 𝜔 randomly
Input: Optimizer; Learning rate; Maximum epoch
for 𝑖 in training epochs do

(1) Calculate the training loss 𝑡𝑟𝑎𝑖𝑛
(2) Backpropagation
(3) Conduct the validation and preserve the better network
parameters

Testing:
Input: Measurements from unknown test battery
Output: Capacity

2.3. Implementation procedure

The pseudo-code of the proposed method is shown in Algorithm 1.
The main procedures are the architecture searching and followed by
the architecture usage. The designed Supernet with mixed operations is
established. The DARTS provides the method to update the architecture
parameters and network parameters simultaneously. From the search
space, the largest architecture weights 𝑐𝑘 obtained in the iterations will
be used to choose the specific operations. Thus, the final architecture
can be determined. The architecture will be deployed as the optimal
network. This network will be trained just like the standard process in
deep learning. The measurements from test battery will be input to the
network to obtain estimated capacity. Due to the diverse distributions
of different datasets, the obtained architecture will also be different.

The experimental hyper-parameters are presented in Table 1. The
overall framework contains three GNN layers. The trials demonstrate
that three layers are efficient and the obtained results are satisfactory.
The feature fusion also benefits to alleviate the over-smoothing problem
in GNN. The learning rates are borrowed from the DARTS. The learning
rate for architecture updating is smaller than that of network parameter
updating. The architecture searching optimizer for parameter 𝑐 is Adam
optimizer, while the network optimizer for parameter 𝜔 is stochastic
gradient descent (SGD). For the GNN model, 𝐾 = 2 is adopted for
ChebyNet. The head number of 4 is adopted for GAT model. The
maximum epoch of 400 is adopted. The temperature used in Eq. (13) is
0.01, which will improve the output of softmax function. The gradient
clipping value is set as 5 to prevent exploding gradients. The window
length is set as 350 and the value will be further analyzed in the
discussion section.

To quantitatively compare the results, the capacity prediction accu-
racy can be evaluated by the following metrics. In these equations, 𝑦𝑖
enotes the predicted capacity, while 𝑦𝑖 denotes the measured capacity
r true value.

(1) Root mean square error (RMSE)
This index is usually applied to measure the difference between the

redicted capacity and true value. The lower RMSE means the better
5

t

prediction.

RMSE =

√

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑛
, (15)

(2) Mean absolute error (MAE)
The MAE averages the absolute difference:

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦𝑖|| , (16)

(3) Maximum absolute error (ME)
This index emphasizes the largest difference:

E = 𝑚𝑎𝑥
1≤𝑖≤𝑛

|

|

𝑦𝑖 − 𝑦𝑖|| , (17)

(4) Goodness-of-fit: R-Squared (R2)
This index is to measure the match between the predicted and true

alues. The ideal value is 1.

2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
, (18)

. Experimental results

.1. Battery dataset

.1.1. Case I: MIT-Stanford dataset
This battery dataset is from the MIT-Stanford, which consists of

24 commercial lithium-ion batteries (type of APR18650M1A) [43].
he nominal capacity of these batteries is 1.1 Ah. Different charging
rotocols were applied and the policy conforms to ‘‘C1(Q1)-C2’’, where

‘C1’’ and ‘‘C2’’ indicate the charging rate of two constant-current
tages, ‘‘Q1’’ is the state-of-charge after first stage. The charging policy
f ‘‘5C(67%)-4C’’, which contains six batteries, is chosen in this study.

.1.2. Case II: Oxford dataset
The Oxford battery degradation dataset is also used to verify the

roposed framework [44]. This dataset contains eight commercial
okam batteries with a capacity of 0.74 Ah. The measurements are
ifferent from those of MIT-Stanford dataset. In detail, after 100 drive
ycles, the characterization measurements, which contain the 1C cycle
nd pseudo-OCV cycle were conducted.

.2. Compared methods

The adopted comparison methods includes: LSTM, CNN-LSTM, AD-
CN, I-PCNN, GCN and GAT. LSTM is the model based on recurrent
eural network. It is often deployed to model the time-series and
chieves good predictive results. In this work, the one-layer LSTM with
idden dimension of 512, same with that of the proposed method,
s adopted. CNN-LSTM is one hybrid network which combines the
onvolutional operation and timescale computation [45]. The LSTM
ayer is connected following the CNN layer. AD-TCN is the attention
epthwise temporal convolutional network, which is an improved ver-
ion of temporal convolutional network, which is suggested by [46].
he convolutional block attention module is incorporated to increase
he weights of important features. Usually, these methods are for
ne sensor output modeling. To conduct an effective comparison, the
ethods are applied to the three measurements 𝑉 , 𝐼, 𝑇 independently.
fter that, the global averaging pooling is supplemented to obtain
ummarized features. Then the commonly used output layer maps the
eatures to the predicted capacity value. I-PCNN firstly converts the
hree measurements into 3 dimensional image and then uses the pruned
onvolutional neural network, which is suggested by [25]. In the GNN-
ased methods, the typical graph aggregation methods of GCN, GAT
re chosen as the comparison methods. Different from the proposed
cheme, just one layer of GCN or GAT composes the model to realize
he same function.
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Table 1
Hyper-parameters in the proposed method.

Parameter Value Parameter Value

Temperature 𝜆 0.01 Architecture Optimizer Adam
Maximum Epoch 400 Architecture Learning Rate 3e−4
Feature Dimension 512 Network Optimizer SGD
Gradient Clipping 5 Network Learning Rate 0.01
Window Length 350 Network Momentum 0.9
Fig. 4. The sample generation process from the battery measurements.
3.3. Implementation details and results

Before constructing the graph structure, the outliers in the capacity
values are removed, based on the statistics of standard deviation around
mean. The sample generation process from one battery cycle is illus-
trated in Fig. 4. The window size 350 is chosen to split the time series
of measurements and form the nodes. The window moves along the
time dimension to construct more graphs, which can be regarded as the
data augmentation. This process is conducted on all the battery cycles
along with the degradation. It needs to note that no specific principle
is applied to choose the starting point of the window. For convenience,
the first window can follow the time when the charging process begins,
but no strict limitation is needed. Due to the different data amount in
the two datasets, the sliding window numbers of 3 and 6 are adopted
for MIT-Stanford dataset and Oxford dataset, respectively. In the test
stage, the sample from the first window is used to estimate the capacity.
Since the network is trained by multiple windowed data, the samples
from other windows can also be applied for test. The differences of the
estimated capacities from different samples will be slight. The following
will just use the first window for network test.

In the proposed scheme, the architecture searching is conducted
first. This process is repeated 5 times and the searching result with
the lowest RMSE is chosen. The searched architecture for MIT-Stanford
dataset and Oxford dataset are depicted in Figs. 5 (a) and (b), respec-
tively. It can be seen that the two architectures own different layer
numbers. The selection operation will automatically decide whether
to choose the corresponding layer. The two datasets adopt different
batteries and they present distinguished degradation characteristics.
The NAS process will decide the specific architecture from the search
space. Rather than using fixed network, this method involves the archi-
tecture searching and then architecture usage. It benefits to the flexible
adaptation to different datasets. Besides, the automatic process will get
rid of the manual design according to experience or trial experiments.

The leave-one-out validation is carried out to assess the performance
of searched architecture. One battery is picked to test the performance
in each dataset, while the rest batteries are used for training and vali-
dation with a proportion of 70% and 30%. All the measured capacity
6

curves of the batteries in the two datasets are provided in Figs. 6(a) and
(d), respectively. It can be found the two datasets present distinguish
degradation processes. Following these figures, the capacity estimation
results are given. For MIT-Stanford dataset, the best prediction is
achieved in battery ID 5 with RMSE of 0.004. The worst is in ID 4
with RMSE of 0.009. The results are provided in Figs. 6(b) and (c),
respectively. For Oxford dataset, Fig. 6(e) presents the best prediction
from ID 5 with RMSE of 0.0064. Fig. 6(f) presents the worst prediction
from ID 2 with RMSE of 0.0108.

Four metrics are calculated to evaluate the performance of pro-
posed scheme for capacity estimation. To quantitatively demonstrate
the superiority, the compared methods are also conducted in the same
dataset setting. The results of the above-mentioned batteries in the two
datasets are summarized in Tables 2 and 3, respectively. For the best
results, the fonts are marked as bold. It can be found that the searched
architecture performs well except for the battery ID 4 in MIT-Stanford
dataset. The GCN model achieves a slightly better result in the RMSE
metric, however, the ME metric is worse than the other methods. It
needs to note that ID 4 is the worst estimation in the proposed method.
However, it still maintains enough competitiveness with other methods.

For clear comparison of these methods, the RMSE values of all the
batteries are presented in Fig. 7. Compared with other methods, the
proposed scheme obtains more stable and superior estimation perfor-
mance in all cases. For LSTM and CNN-LSTM models, the errors are
rather large in MIT-Stanford dataset, among the methods. In Oxford
dataset, these two models present close results to the proposed method.
AD-TCN and I-PCNN models present middle accuracy in both two
datasets. The temporal convolutional module with attention module
benefits to the relatively steady performance. While for I-PCNN, the
results also show distinct fluctuations among different battery IDs
in each dataset. The GCN model behaves in an opposite trend and
the errors in the second dataset have difficulty meeting the capacity
estimation need in the actual scenario. On the contrary, the proposed
scheme will search suitable architecture for different datasets. The
architecture after training also performs well in the target battery.
Therefore, the proposed scheme presents competitive results for battery

capacity estimation.
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Fig. 5. The searched architectures. (a) For MIT-Stanford dataset. (b) For Oxford dataset.
Fig. 6. The capacity estimation results for MIT-Stanford dataset (a)–(c) and Oxford dataset (d)–(e). (a) The measured capacity in the MIT-Stanford dataset. (b) The best estimation.
(b) The worst estimation. (d) The measured capacity in the Oxford dataset. (e) The best estimation. (f) The worst estimation.
Table 2
Comparison results of two test batteries in MIT-Stanford dataset.

Method Test Battery ID 5 Test Battery ID 4

RMSE MAE ME R2 RMSE MAE ME R2

LSTM 0.0152 0.0128 0.0583 0.8439 0.0094 0.0067 0.0469 0.9348
CNN-LSTM 0.0152 0.0122 0.0570 0.8444 0.0091 0.0057 0.0884 0.9382
AD-TCN 0.0070 0.0048 0.0488 0.9668 0.0111 0.0073 0.0778 0.9088
I-PCNN 0.0125 0.0100 0.0454 0.8938 0.0094 0.0070 0.0666 0.9337
GCN 0.0069 0.0054 0.0401 0.9676 0.0086 0.0039 0.1160 0.9452
GAT 0.0101 0.0083 0.0403 0.9315 0.0097 0.0073 0.0830 0.9300

Proposed 0.0040 0.0025 0.0278 0.9894 0.0090 0.0078 0.0377 0.9399
4. Further analysis and discussions

To verify the effectiveness and superiority of proposed scheme,
more analysis are conducted in this section.
7

4.1. Influence of window length

The window length is an important hyper-parameter for time-series
modeling. In this work, the windowed data is used to construct the
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Table 3
Comparison results of two test batteries in Oxford dataset.

Method Test Battery ID 5 Test Battery ID 2

RMSE MAE ME R2 RMSE MAE ME R2

LSTM 0.0142 0.0072 0.0766 0.8405 0.0159 0.0105 0.0798 0.9145
CNN-LSTM 0.0083 0.0066 0.0225 0.9458 0.0129 0.0097 0.0350 0.9443
AD-TCN 0.0129 0.0084 0.0593 0.8691 0.0164 0.0111 0.0793 0.9099
I-PCNN 0.0093 0.0061 0.0330 0.9312 0.0141 0.0105 0.0327 0.9332
GCN 0.0214 0.0162 0.0679 0.6385 0.0410 0.0297 0.1257 0.4323
GAT 0.0155 0.0132 0.0401 0.8113 0.0128 0.0104 0.0279 0.9449

Proposed 0.0064 0.0049 0.0212 0.9674 0.0108 0.0086 0.0272 0.9606
Fig. 7. The RMSE values for the two datasets. (a) The results of the MIT-Stanford dataset. (b) The results of the Oxford dataset.
Fig. 8. The influence of different window lengths. (a) The RMSE value in the MIT-Stanford dataset. (b) The RMSE value in the Oxford dataset.
raph. To analyze its influence, different window lengths are compared
n this work, and the results are depicted in Fig. 8. As the provided
harging data in MIT-Stanford dataset is shorter than that of Oxford
ataset, the window lengths adopted in the two datasets are different.

The results present the general trend that the RMSE drops with the
ncrease of window length. In the Oxford dataset, from window length
50 to 450, the improvement of capacity estimation is not distinct.
verall, the chosen window length of 350 as the hyper-parameter

eems to be a reasonable choice according to the quantified results.
In the literature, some works used the charging data in a fixed

oltage range to predict the capacity. While in this work, the windowed
ata with fixed length is considered. Thus, the input length will also be
ixed for the network, which is convenient for the network training and
ollowing application. The key point is that the network input should
wn enough information for further feature extraction.
8

4.2. Ablation study on GNN layer

The designed network incorporates both the GNN layers and final
output layers. Since the output layers and initial embedding layer have
the function of mapping the input to the capacity, the ablation study is
carried out to verify the effectiveness of GNN layers. After removing the
GNN layers, the architectures will be like the multi-layer perceptron. It
still remains the modeling capability of neural network.

The results of models with and without GNN layers are shown in
Tables 4 and 5. Without GNN layers, the apparent increase exists in
the RMSE values for both two datasets. For some battery IDs, the
increased error reaches more than 100%. These ablation results indicate
the important efforts of GNN layers in the estimation.

In summary, the GNN layers aggregate the measurements effectively
and accomplish the modeling from the measurements to the features.
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Table 4
RMSE of MIT-Stanford dataset from the ablation study.

Ablation Study ID 1 ID 2 ID 3 ID 4 ID 5 ID 6

Without GNN Layers 0.0148 0.0138 0.0127 0.0106 0.0162 0.0138
With GNN Layers 0.0059 0.0045 0.0048 0.009 0.004 0.0062
Table 5
RMSE of Oxford dataset from the ablation study.

Ablation Study ID 1 ID 2 ID 3 ID 4 ID 5 ID 6 ID 7 ID 8

Without GNN Layers 0.0440 0.0502 0.0400 0.0334 0.0486 0.0451 0.0349 0.0382
With GNN Layers 0.0079 0.0108 0.0106 0.0106 0.0064 0.0105 0.0081 0.0080
Table 6
The alternative models for the two datasets.

Dataset Model Layer Data Aggregation Feature fusion

MIT-Stanford
Alternative Model 1 3 ChebyNet, GAT, GCN Sum, Max, Concat, Max
Alternative Model 2 2 GAT, ChebyNet Concat, Concat, Concat
Alternative Model 3 3 ChebyNet, ChebyNet, ChebyNet Concat, Max, Concat, Max

Oxford
Alternative Model 1 3 ChebyNet, ChebyNet, GCN Max, Max, Concat, Max
Alternative Model 2 2 ChebyNet, GraphConv Max, Concat, Concat
Alternative Model 3 2 ChebyNet, GAT Sum, Concat, Concat
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The other layers mainly worked as auxiliary structures. Combined with
the superior results shown in Fig. 7, it concludes that the GNN layers
present the capability to learn discriminant features automatically.

It is worth mentioning that, the features from different GNN layers
are also fused to improve the network learning ability. The proposed
method is compared with the cases of one GNN layer, such as GCN,
GAT. From the enhancement of performance, the feature fusion from
multiple GNN layers benefits to the efficient mapping from measure-
ments to capacity. Especially for Oxford dataset, the final deployed
network contains two GNN layers. According to the comparisons with
one layer of GCN and GAT in Table 3, the four metrics all achieve
distinct improvements.

4.3. Ablation study on NAS

The NAS strategy is used in this work to automatically find the opti-
mal network architecture, from all combinations of different operations
in data aggregation and feature fusion. To verify the effectiveness of
NAS, other architectures are adopted here for comparison. Three alter-
native models produced in the searching process of NAS are chosen.
These models are the intermediate output before the ending of NAS.
The alternative models are presented in Table 6. These models present
different layer numbers and diverse module compositions.

These models are trained using the same setting to observe the
results. The validation loss curves in the model validation process are
extracted. Figs. 9 (a) and (b) present the loss curves for the MIT-
Stanford dataset and Oxford dataset, respectively. In the MIT-Stanford
dataset, the loss curve of finally searched model is nearly in a steady
decreasing trend. The other three alternative models present apparent
rise and fall at the beginning. At last, they converge to a larger
loss compared with the searched model. In the Oxford dataset, the
increasing loss occurs in the initial stage for these models. However, the
alternative models decrease slower in the following epochs. Alternative
models 1 and 2 also show severe fluctuations when reaching the ending
of the training/validation process.

For the testing stage of these models, the four metrics are calculated
for final capacity estimation. The results are shown in Figs. 9 (c) and (d)
for the two datasets, respectively. In the metric of R-Squared, since it is
used to measure the fitness, the values reach near 1 and the differences
in these models are not distinct. Regarding the accuracy related RMSE
metric, the searched architecture outperforms the other models. It can
also be found that some of the alternative models can achieve better ME
metrics. In the overall view, the NAS strategy shows the effectiveness
9

in model searching. T
4.4. Influence of noise

The sensors may produce noisy data and this will influence the
performance of data-driven methods. To measure such kind of influ-
ence, the white Gaussian noise is added to the measurements of 𝑉 ,
𝐼 , 𝑇 . The addictive noise has a mean of zero and a mean standard
deviation of 5%. The model is trained and tested again under such a
noisy environment.

The RMSE values with and without the Gaussian noise are shown
in Fig. 10. It can be found the RMSE metrics present the increases in
different levels, which indicates the performance of models both face
challenges. For the Oxford dataset, the larger capacity estimation errors
occur compared with those in the MIT-Stanford dataset.

To evaluate the performance, the absolute error of |
|

𝑦𝑖 − 𝑦𝑖|| is calcu-
ated for the estimated capacity in each cycle. The statistical results
re shown in the form of box plot. The comparison methods are
lso conducted. Figs. 11 (a) and (b) present the error statistics for
he two datasets. For the MIT-Stanford dataset, the proposed method
as the fewest outliers. Besides, the error ranges are also limited.
or the Oxford dataset, in most cases, the proposed method presents
ower errors and also more concentrated error ranges. In addition,
he comparison methods obtain inconsistent performances in the two
atasets. AD-TCN achieves not prominent but stable results in MIT-
tanford dataset. However, the error ranges become larger and also
resent evident variations in different battery IDs of Oxford dataset.
-PCNN can obtain relatively better results in Oxford dataset, but its
erformances drop in the other dataset. The GCN model can achieve
ompetitive results for MIT-Stanford dataset, while the error ranges
ecome the largest for another dataset. Besides, some literature uses
he incremental capacity analysis which needs differential operation
onducted on voltage information. These categories of methods will
e severely affected since the differential operation tends to amplify
easurement noise.

Overall, the proposed scheme presents a certain degree of advantage
hen facing noisy data. Nonetheless, the noise worsens the capacity es-

imation. Necessary filtering pre-processing steps can be applied before
ata input to the model.

In this section, the hyper-parameter of window length is investi-
ated. The chosen value is reasonable to obtain satisfactory results.
he components of the proposed framework, namely the GNN layer
nd NAS, are discussed to demonstrate their necessity and efficiency.

he performances under noisy environments are also analyzed to verify



Applied Energy 336 (2023) 120808Z. Wang et al.
Fig. 9. The verification of NAS. (a) The validation loss curve in the MIT-Stanford dataset. (b) The validation loss curve in the Oxford dataset. (c) The metrics of capacity estimation
in the MIT-Stanford dataset. (d) The metrics of capacity estimation in the Oxford dataset.
Fig. 10. The error caused by noise. (a) The RMSE value in the MIT-Stanford dataset. (b) The RMSE value in the Oxford dataset.
the advantage. However, some drawbacks need to be mentioned. The
implementation of NAS requires the computation of all the possible
operations and the process is time-consuming. The GNN model adopts
the measurements from multiple sensors. If one of the sensors fails, it
will influence the normal function of this model. Overall, the proposed
method presents great potential for the battery management system.
With the real-time monitoring data of voltage, current, and tempera-
ture, the method can be deployed online to predict the capacity, which
provides the prospect for practical engineering application.
10
5. Conclusions

This work proposes the measurements aggregation and feature fu-
sion scheme to estimate the capacity of lithium-ion batteries. The
MIC is introduced to organize the measurements into graph structure.
Different GNN layers are designed to accomplish the data aggregation
and further feature fusion. To demonstrate the effectiveness of proposed
scheme, the MIT-Stanford and Oxford public datasets are applied to
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Fig. 11. The results after the introduction of Gaussian noise. (a) The estimation errors in the MIT-Stanford dataset. (b) The estimation errors in the Oxford dataset.
onduct the algorithm. The proposed scheme presents superior and con-
istent performance for capacity estimation. The GNN layers provide
he effective modeling capability and aggregate the data efficiently. The
dopted NAS successfully obtain the optimal architectures for the two
atasets. The experiments under noise further indicate the superiority
f the proposed scheme. In all, this work provides a potential avenue
owards accurate capacity estimation. The future works include the
nhancement of computational efficiency, improvement for lightweight
odel and investigation of robustness under sensor failure.
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